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ABSTRACT: A method for calculating fully anharmonic vibrational state
counts, state densities, and partition functions for molecules is presented.
The method makes use of a new quantity, the intrinsic density of states,
which is associated with the states that uniquely arise from a given mode,
mode pairing, or higher-order mode coupling. By using only low-order
intrinsic densities, the fully coupled anharmonic vibrational result can be
constructed, as shown by our application of the method to methane, CH4,
and cyclopropene, C3H4. Truncation of the intrinsic expansion at the
coupling of pairs of modes yields greatly improved scaling over direct
evaluation of the full-dimensional result and recovers a large fraction of the
total anharmonicity. We also discuss the relation of the new quantities to
the structure of the potential energy surface.

SECTION: Kinetics and Dynamics

Accurate predictions of kinetics and thermodynamics
depend critically on accurate evaluation of the rovibra-

tional density of states, ρ(E), and its related quantities.1−4 In
the classic Rice, Ramsperger, Kassel, and Marcus (RRKM)
theory of unimolecular reactions, the rate constant is
proportional to the number of states at the transition state
divided by the density of states of the reactant. Similarly, in
bimolecular canonical transition state theory (TST) the rate
constant is dependent on the density of states through the
appearance of partition functions corresponding to the
reactants and to the transition state.2 Unfortunately, these
quantities are difficult to evaluate accurately for several
reasons, including the need for proper quantization, couplings
between rotations and vibrations, and anharmonic couplings
among the vibrations. In this letter we present a general and
efficient scheme for including the important anharmonic
coupling.
A common approximation, which makes the computation of

ρ(E) quite amenable, is to use a separable model in which
every vibrational degree of freedom is assumed to be totally
uncoupled from any of the others. Most often each mode is
further assumed to be harmonic, although sometimes modes
are given special treatment as Morse oscillators, hindered
rotors, etc. Algorithms and computer implementations of
these methods, e.g., the semiclassical Whitten-Rabinovitch
(WR) approximation,5 the Beyer−Swinehart (BS)6 and
Stein−Rabinovitch (SR)7 state counting algorithms, or the
steepest-descent method,4 are readily available. As might be
expected, at higher energies these approximations can
significantly underestimate the anharmonicity because of the
neglect of the coupling between vibrational modes. This is

true even when the underlying independent vibrations are
treated as anharmonic oscillators.8,9

Many attempts have been made to improve on the
separable approximation by looking at the specific coupling
between different modes. For instance, the coupling of bends
to stretches has been studied and empirical models describing
this coupling have been constructed,10−13 the role of stretch−
stretch coupling has been investigated in triatomic sys-
tems,12,14 numerous methods for treating torsional motions
have been developed,2,3,15−18 and Monte Carlo integration has
been applied to calculation of quantum vibrational states using
a spectroscopic (e.g., Dunham19) expansion, which includes
some anharmonic terms.20−23 It is also worth noting the
recent semiempirical work of Schmatz24 as well as the
thermodynamic method, which relies on experimental
data,25,26 the density correlation function method of Jeffreys
et al.,27,28 and the use of path-integral methods to calculate
the quantum partition function directly.29,30 The accurate
inclusion of the coupling terms, however, remains an open
issue.
Despite its associated problems, separability has certain nice

features that we wish to retain. It allows a complex problem,
the calculation of the full-dimensional coupled density of
states, ρ(E), to be broken down into a set of small, readily
computable quantities that can be then reassembled to yield
the full result. As such, it renders large, potentially intractable
problems amenable to computation. In this Letter, we
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propose a method for the efficient construction of the
anharmonic density of states via an expansion in terms of
intrinsic n-mode densities of states. This formalism includes
the separable approximation at its lowest order and is
systematically improvable by including the effect of coupled
pairs, triples, etc. of modes. Furthermore, we show that, while
accurate results are not obtained with 1-mode intrinsics,
accurate results can be obtained via 2-mode intrinsic state
densities.
The intrinsic n-mode densities of states correspond to the

component of the density of states that cannot be generated
by convolutions of lower-mode densities of states and will be
denoted, Δ. The intrinsic 2-mode density of states is,

ρ ρ ρΔ = − ∗E E E E( ) ( ) ( ) ( )ij ij i j (1)

where ρij(E) is the exact density of states spanned by modes i
and j, while ρi(E) and ρj(E) are the 1-mode densities of states
associated with each individual mode and the notation a∗b
denotes the convolution. Here the 1-, 2-, and reduced-mode
densities are calculated with the remaining coordinates fixed at
some reference. The intrinsic 3-mode density of states is,
similarly,
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Comparisons of the 2- and 3-mode intrinsic state densities
with full 2- and 3-mode state densities are shown in Figure 1.
The practical usefulness of the previous equations is that

one can make general expressions for the full-dimensional
molecular state density through various orders of the n-mode
intrinsic state density. At first order, the method reduces to
the usual separable approximation. At second order, Δijk(E)
and all higher-order intrinsics are set to 0, and one can write
the following equations for the pairwise coupled 3- and 4-
mode systems:
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where the superscript (n) indicates the order of the
approximation. Generalization to larger molecular systems
and/or to higher n-mode approximations is straightforward.
While the previous equations are suitable to continuous ρ, i.e.,
those derived from classical expressions, with slight
modification they can be used for discrete, i.e., quantum, ρ.
For discrete states, the pairwise coupled 3-mode system is
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where the extra factors of 1/3 arise from the requirement that
ρijk
(2)(E) ≥ 0.
Here, we have applied the 2-mode version of method to the

calculation of state counts, densities of states, and partition
functions for methane, CH4, and cyclopropene, C3H4.
Classical phase space integrals for state counts and densities
of states were evaluated using our recently published Monte
Carlo algorithm, mcPSI.31 For methane, we also demonstrate
the quantized version of the method where we solve for ρi
and Δij using one- and two-dimensional vibrational Hamil-
tonians and compare with full-dimensional vibrational
configuration interaction (VCI) results. In all cases, the
coordinates employed are mass-weighted Cartesian normal
modes and calculations correspond to the vibrational states
with zero angular momentum.
As a test of the 2-mode coupling scheme we have used

methane with a tight-binding potential.32,33 This potential is a
good approximation to the true ab initio potential and has the
advantage of being exceptionally quick to evaluate. With this
potential we can easily achieve millions of samples for all of
the Monte Carlo runs and this tightly converge the results
and minimize any effects of statistical noise. For reference, the
vibrational frequencies of CH4 with this potential are v1 = v2 =
v3 = 1573 cm−1, v4 = v5 = 1692 cm−1, v6 = 3157 cm−1, and v7

Figure 1. Selected 2- and 3-mode intrinsic densities of states for the indicated mode combinations of CH4.
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= v8 = v9 = 3248 cm−1, where we have reflected degeneracies
by repeating frequencies in the list so that the subscripts also
number the nine normal modes. The accuracy of the pairwise
coupled densities of states is shown in Figure 2, where it is
compared with the separable approximation and with the fully
coupled result. The agreement of ρ(2) with the full-mode
coupled density of states is excellent for the classical densities,
whereas the usual separable approximation underpredicts the
state density by a factor of 2 at threshold. For this system, ρ(1)

results in negligible improvements over the harmonic
approximation due to cancellation of positive and negative
anharmonicities. The comparison of the integrated quantum
density of states, W, is also shown in Figure 2. While the
pairwise coupled approximation yields a general shift of states
to lower energies, it is only a small improvement over the
separable case. It is worth noting, however, that applying a
classically calculated anharmonicity correction to the quantum
harmonic vibrational properties may yield good agreement
with results based on direct state counts.31

One might assume that only certain modes (i.e., those that
are similar in frequency or in other criteria) couple, and we
can test this hypothesis by looking at the 2-mode intrinsic
densities. Within the normal coordinate representation used
here, almost all of the modes couple with all of the other
modes. In particular, most of the low-frequency bends couple
to the high-frequency stretches, and it is the anharmonicity
from this intermode coupling that yields a large portion of the
total anharmonicity of the full result as shown in the
Supporting Information (SI). When using normal modes, at
least, this result underscores the necessity of including the

coupling between all pairs of normal modes in order to
recover the full anharmonicity.
We have also tested the accuracy of the pairwise coupled

state densities for cyclopropene, for which we employed a
direct ab initio potential at the B3LYP/6-311++G(d,p) level of
theory. All electronic structure calculations employed the
Gaussian 09 package.34 Results are compared with a
calculation of the full-dimensional density of states in Figure
3. Evaluation of the pairwise coupled density of states is
significantly less computationally demanding. While ad-
equately converging the full-mode density of states for
cyclopropene took approximately 125 000 h of computer
time, the equivalent calculation of the 2-mode coupled state
density required only 4000 computer hours using the same
cluster. The accuracy of ρ(2) is very good for cyclopropene,
and it is a significant improvement over ρ(1). Due to several of
the modes having large positive anharmonicities in cyclco-
propene, the harmonic approximation yields better results
than the separable approximation.
To further motivate the intrinsic n-mode densities, it is

useful to consider their relation to potential energy surfaces.
The potential energy of a molecule with n degrees of freedom
may be expanded about a specific geometry as
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∂

+ ∂
∂ ∂

+V q q V
V
q

q
V

q q
q q( , ..., )

1
2

...n
i i

i
i j i j
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,

2

(6)

where V0 is the potential energy at the reference geometry,
and qi are the coordinates that we take without loss of
generality to be 0 at the reference structure. The expansion

Figure 2. Accuracy of separable and pairwise coupled approximations to (a) the classical density of states and (b) the integrated quantum density
of states for methane.

Figure 3. Accuracy of the separable (1-mode) and pairwise (2-mode) densities of states for cyclopropene.
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given in eq 6 corresponds to the standard multivariable
generalization of the Taylor series, and the polynomial order
of the expansion defines both the maximum number of
degrees of freedom that can be coupled as well as the
maximum order of the coupling. Alternatively, we can expand
the potential as

∑ ∑= + +
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n n
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The arrangement of the sum in form given by eq 7 and eq 8
is usually termed the n-mode representation (nMR), and has
a been used extensively in the vibrational dynamics
community.35 For convenience in the subsequent equations,
we will drop the zeroth-order term V0 since this can always be
removed by an appropriate shift of the energy. Different
approximations to ρ involve the truncation of either eq 6 or
eq 7 at different orders. For instance, direct state counts based
on a perturbation theory expansion of the vibrational energy
levels, for instance the methods based on the Dunham
expansion, often involve the truncation of eq 6 at the quartic
level. The equations proposed here, however, truncate eq 7 at
a specified number of modes rather than an order of
polynomial expansion and coupling to infinite order within
each pair, triple, etc. is included.
We will now explicitly consider the form of the 2-mode

intrinsic density of states. For two modes, the number of
states with energy less than or equal to E is given by

∫ ∫ρ π≡ = Θ − −W E x x
h
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2
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d d
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where h is Planck’s constant, Θ is the Heaviside step function,
and we have already performed the analytic integration over
the momenta. For a more detailed explanation of this
procedure, we refer the reader to the details of our Monte
Carlo algorithm.31 Substituting the expression for the pairwise
coupled state densities into eq 9 yields,
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Now introducing the separable approximation for the
potential we arrive at, after some manipulation,
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where we have used V(1) = V(1)(qi) + V(1)(qj). The first term
is the state count obtained via the 1-mode separable
approximation. The second term of eq 11 corresponds to a
correction over the region defined by Θ[E − V(1)] due to the
potential coupling V(2). When the sign of V(2) is negative,
meaning that the sum of V(1) terms yields too high of an
energy, the number of states is increased, whereas when the
sign of V(2) is positive the number of states is decreased. An
example of V(2) is shown in the SI for methane. The final
piece of eq 11 corresponds to a correction due to the
expansion or contraction of the integration region because of
V(2). An example of this correction is shown in Figure 4 for a
stretch−bend coupling (q2, q8) and a stretch−stretch coupling
(q7, q8) for methane. From the plots in Figure 4 and the SI, it
is apparent that both pieces of the correction could be
important; however, from the specific examples we have
looked at in both methane and cyclopropene, the third term
of eq 11 has been the more important. From the associated
plot, one can also see some of the fortuitous cancellation of
errors that occurs in the harmonic approximation. Whereas
the sum of the 1-mode terms leads to a compression of the
integration region compared to its harmonic approximation at
each specified energy, the full potential both compresses the
region along certain axes and expands it along others.
We have introduced a mode coupling scheme based on

hierarchical n-mode expansions and have demonstrated that
accurate full-dimensional anharmonic state densities may be
obtained by truncating the representation at second order, i.e.,
by considering only a pairwise coupled representation. As
shown for methane and cyclopropene, the pairwise coupled
method yields a significant improvement in the calculated
density of states over either the harmonic approximation or

Figure 4. Contour plots of V(q2, q8) and V(q7, q8), in red, versus V(1)(q2) + V(1)(q8) and V(1)(q7) + V(1)(q8), in green, and the respective
harmonic approximations, in blue for CH4. Contour lines are at 10 000, 20 000, 30 000, and 40 000 cm−1, respectively.
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the one-dimensional, separable approximation. In addition, the
method we have developed can be systematically improved by
the inclusion of important 3- or higher-mode couplings. While
the use of normal modes uncouples them at second order for
infinitesimal displacements, they may not be the most efficient
coordinates for vibrational calculations in general. We and
other authors have discussed alternative coordinate choices
with which to perform vibrational calculations,31,36−40 and the
present approach can benefit from these efficiency improve-
ments as well. For instance, one could attempt to minimize
Δijk(E) with respect to the coordinates. Here we have
evaluated the classical intrinsic n-mode density using mcPSI,
and also shown that it is possible to apply this correction by
using quantum mechanically calculated Δij(E). This method
offers an approach to intermode coupling through the use of
functions that are dependent on two or more modes, which
may be of use in the calculation of kinetic and
thermodynamic quantities.
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